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On the approximation exponents for subspaces of Rn

Elio Joseph

This paper follows the generalisation of the classical theory of Diophantine approximation to subspaces
of Rn established by W. M. Schmidt in 1967. Let A and B be two subspaces of Rn of respective
dimensions d and e with d + e ⩽ n. The proximity between A and B is measured by t = min(d, e)
canonical angles 0 ⩽ θ1 ⩽ · · · ⩽ θt ⩽

π
2 ; we set ψj (A, B) = sin θj . If B is a rational subspace, its

complexity is measured by its height H(B)= covol(B ∩ Zn). We denote by µn(A|e)j the exponent of
approximation defined as the upper bound (possibly equal to +∞) of the set of β > 0 such that the
inequality ψj (A, B)⩽ H(B)−β holds for infinitely many rational subspaces B of dimension e. We are
interested in the minimal value µ̊n(d |e)j taken by µn(A|e)j when A ranges through the set of subspaces
of dimension d of Rn such that for all rational subspaces B of dimension e one has dim(A ∩ B) < j . We
show that µ̊4(2|2)1 = 3, µ̊5(3|2)1 ≤ 6 and µ̊2d(d |ℓ)1 ≤ 2d2/(2d − ℓ). We also prove a lower bound in
the general case, which implies that µ̊n(d |d)d → 1/d as n → +∞.

1. Introduction

The classical theory of Diophantine approximation studies how well points of Rn can be approximated by
rational points. Here, we are interested in a problem studied by W. M. Schmidt [1967], which consists in
approximating subspaces of Rn by rational subspaces. The results presented here can be found in my
Ph.D. thesis (see [Joseph 2021] Chapters 3 and 4 for more details).

A subspace of Rn is said to be rational whenever it admits a basis of vectors with rational coordinates.
Denote by Rn(e) the set of rational subspaces of dimension e of Rn. A subspace A of Rn is called
(e, j)-irrational whenever dim(A ∩ B) < j for all B ∈ Rn(e); notice that being (e, 1)-irrational is
equivalent to trivially intersecting all subspaces of Rn(e). Denote by In(d, e)j the set of all (e, j)-
irrational subspaces of dimension d of Rn.

Let us define a notion of complexity for a rational subspace and a notion of proximity between two
subspaces, which will lead to the formulation of the main problem.

Let B ∈ Rn(e); one can choose 4 ∈ ZN , with N =
(n

e

)
, a vector with setwise coprime coordinates in

the class of Plücker coordinates of B. Let us define the height of B to be the Euclidean norm of 4:

H(B)= ∥4∥.

Endow Rn with the standard Euclidean norm, and define the distance between two vectors X, Y ∈Rn
\{0}

by

ψ(X, Y )= sin (̂X, Y )=
∥X ∧ Y∥

∥X∥ · ∥Y∥
,
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where X ∧ Y is the exterior product of X and Y, and the Euclidean norm ∥·∥ is naturally extended to
32(Rn) so that ∥X ∧ Y∥ is the area of the parallelogram spanned by X and Y. Let A and B be two
subspaces of Rn of dimensions d and e respectively. One can define by induction t = min(d, e) angles
between A and B. Let us define

ψ1(A, B)= min
X∈A\{0}

Y∈B\{0}

ψ(X, Y )

and denote by X1 and Y1 unitary vectors such that ψ(X1, Y1) = ψ1(A, B). Then, by induction, it is
assumed that ψ1(A, B), . . . , ψj (A, B) have been constructed for j ∈ {1, . . . , t −1}, associated with pairs
of vectors (X1, Y1), . . . , (X j , Yj ) ∈ A × B respectively. One denotes by Aj the orthogonal complement
of Span(X1, . . . , X j ) in A and by Bj the orthogonal complement of Span(Y1, . . . , Yj ) in B. Let us define
in a similar fashion

ψ j+1(A, B)= min
X∈Aj \{0}

Y∈Bj \{0}

ψ(X, Y )

and denote by X j+1 and Y j+1 unitary vectors such that ψ(X j+1, Y j+1)= ψ j+1(A, B).
These angles between A and B are canonical in the sense of this paragraph, based on [Schmidt 1967,

Theorem 4]. This will also be used to prove Claim 6.2 in Section 6 below. There exist orthonormal bases
(X1, . . . , Xd) and (Y1, . . . , Ye) of A and B respectively, and real numbers 0 ⩽ θt ⩽ · · · ⩽ θ1 ⩽ 1 such
that for all i ∈ {1, . . . , d} and for all j ∈ {1, . . . , e}, X i · Yj = δi, j cos θi , where δ is the Kronecker delta
and · is the canonical scalar product on Rn. Moreover, the numbers θ1, . . . , θt are independent of the
bases (X1, . . . , Xd) and (Y1, . . . , Ye) chosen. Notice that ψj (A, B)= sin θj .

We can now formulate the main problem. Let n ⩾ 2, d, e ∈ {1, . . . , n − 1} such that d + e ⩽ n,
j ∈ {1, . . . ,min(d, e)}, and A ∈ In(d, e)j . Let us define by µn(A |e)j the upper bound (possibly equal
to +∞) of all β > 0 such that

ψj (A, B)⩽
1

H(B)β

holds for infinitely many B ∈ Rn(e). One also defines

µ̊n(d |e)j = inf
A∈In(d,e)j

µn(A |e)j .

Problem 1.1. Determine µ̊n(d |e)j in terms of n, d, e, j .

Schmidt [1967, Theorems 12–13, 15–17] proved several bounds on the quantity µ̊n(d |e)j . In all what
follows, let t = min(d, e).

Theorem 1.2 [Schmidt 1967]. For all j ∈ {1, . . . , t}, one has

d(n − j)
j (n − d)(n − e)

⩽ µ̊n(d |e)j ⩽
1
j

⌈
e(n − e)+ 1
n + 1 − d − e

⌉
,

Moreover, when j = 1,

µ̊n(d |e)1 ⩾
n(n − 1)

(n − d)(n − e)
.

Schmidt improved the lower bound when an additional hypothesis is met. He also determined some
exact values of µ̊n(d |e)j . In particular, Problem 1.1 is completely solved when min(d, e)= 1.
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Theorem 1.3 [Schmidt 1967]. Let j ∈ {1, . . . , t}. If

j + n − t ⩾ j ( j + n − d − e),

then

µ̊n(d |e)j ⩾
j + n − t

j ( j + n − d − e)
.

Moreover, when j = t ,
µ̊n(d |e)t =

n
t (t + n − d − e)

.

A direct application of Schmidt’s going-up theorem [1967, Theorem 9] is the following result proved
in Section 5 below.

Proposition 1.4. Let d, e, j, ℓ ∈ N∗ be such that d + e ⩽ n, 1 ⩽ j ⩽ ℓ⩽ e and j ⩽ d. Then

µ̊n(d |e)j ⩾
n − ℓ

n − e
· µ̊n(d |ℓ) j .

This proposition implies some straightforward improvements. For instance, the known lower bound
µ̊6(3|3)2 ⩾ 5

4 (Theorem 1.2) becomes µ̊6(3|3)2 ⩾ 4
3 using µ̊6(3|2)2 = 1 (Theorem 1.3).

Both N. Moshchevitin [2020, Satz 2] and N. de Saxcé [2020, Theorem 9.3.2] improved some upper
bounds.

Theorem 1.5 [Moshchevitin 2020]. Let d ⩾ 1 be an integer. One has

µ̊2d(d |d)1 ⩽ 2d.

Theorem 1.6 [de Saxcé 2020]. Let n ⩾ 2 and d ∈ {1, . . . , ⌊n/2⌋}. One has

µ̊n(d |d)d ⩽
n

d(n − d)
.

The simplest unknown case and also the last unknown case in R4 is (n, d, e, j) = (4, 2, 2, 1).
Theorem 1.2 together with Theorem 1.5 gives 3 ⩽ µ̊4(2|2)1 ⩽ 4. Here, we will show the following
theorem.

Theorem 1.7. One has
µ̊4(2|2)1 = 3.

The next unknown cases are in R5. One can notice that Theorem 1.2 combined with Theorem 1.3 gives
4 ⩽ µ̊5(3|2)1 ⩽ 7. This upper bound is improved by 1.

Theorem 1.8. One has
µ̊5(3|2)1 ⩽ 6.

Combining Theorem 1.5 and Proposition 1.4, an improvement on the known bound for µ̊2d(d |ℓ)1 is
deduced; see the beginning of Section 5 for examples.

Theorem 1.9. Let d ⩾ 2 and ℓ ∈ {1, . . . , d}. One has

µ̊2d(d |ℓ)1 ⩽
2d2

2d − ℓ
.



24 ELIO JOSEPH

Finally, we prove a new lower bound in the general case.

Theorem 1.10. Let n ⩾ 4 and d, e ∈ {1, . . . , n − 1} such that d + e ⩽ n; let j ∈ {1, . . . ,min(d, e)}. One
has

µ̊n(d |e)j ⩾
(n − j)( jn − jd + j2/2 + j/2 + 1)

j2(n − e)(n − d + j/2 + 1/2)
.

This leads to the following corollary.

Corollary 1.11. One has, for any fixed d ⩾ 1,

lim
n→+∞

µ̊n(d |d)d =
1
d
.

Section 2 focuses on the case of the approximation of a plane by rational planes in R4 (Theorem 1.7).
In Section 3 we approximate a subspace of dimension 3 by rational planes (Theorem 1.8). Then, in
Section 4, we comment briefly on the method developed in the previous two sections. Section 5 contains a
proof of Theorem 1.9. Finally, Section 6 develops how to decompose the subspace one wants to approach
into subspaces of lower dimensions, and this leads to a proof of Theorem 1.10 and Corollary 1.11.

2. Approximation of a plane by rational planes in R4

The main result is Theorem 1.7: µ̊4(2|2)1 = 3. It finishes the solution of Problem 1.1 for n ⩽ 4. To prove
this theorem, some planes of R4 are explicitly constructed, which are (2, 1)-irrational and not so well
approximated by rational planes. For ξ ∈ ]0,

√
7[, let us consider the plane Aξ of R4 spanned by

X (1)
ξ =


0
1
ξ√

7−ξ 2

 and X (2)
ξ =


1
0

−
√

7−ξ 2

ξ

 .

The crucial lemma in order to prove Theorem 1.7 is Lemma 2.1 below, which requires the function ϕ,

ϕ(A, B)=

min(dim A,dim B)∏
j=1

ψj (A, B). (1)

Lemma 2.1. There exist real numbers ξ ∈ ]0,
√

7[ and c > 0 such that Aξ ∈ I4(2, 2)1 and, for all
B ∈ R4(2),

ϕ(Aξ , B)⩾
c

H(B)3
. (2)

From Lemmas Lemma 2.1 and 2.6 below, we shall deduce the following proposition.

Proposition 2.2. There exists ξ ∈ ]0,
√

7[ such that

µ4(Aξ |2)1 = 3.

Theorem 1.7 comes directly from the definition of µ̊, Proposition 2.2 and Theorem 1.2. Before proving
Proposition 2.2, let us introduce some notation and two basic lemmas.

Given vectors X1, . . . , Xe ∈ Rn, let us denote by M ∈ Mn,e(R) the matrix whose j-th column is
X j for j ∈ {1, . . . , e}. Let us define the generalised determinant of the family (X1, . . . , Xe) to be
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D(X1, . . . , Xe) =
√

det( tM M). The following result gives an equivalent definition of the height of a
rational subspace (see [Schmidt 1991, Lemma 5H and Corollary 5I]).

Theorem 2.3. Let B ∈Rn(e) and (X1, . . . , Xe) be a basis of B ∩ Zn. If one denotes by η= (η1, . . . , ηN ),
where N =

(n
e

)
, the Plücker coordinates associated with (X1, . . . , Xe) and ordered by lexicographic order,

one has η ∈ ZN and gcd(η1, . . . , ηN )= 1. Moreover,

H(B)= D(X1, . . . , Xe).

Let us make a link between proximity and height.

Lemma 2.4. Let n ⩾ 2, d, e ∈ {1, . . . , n − 1} be such that d + e = n, A be a subspace of dimension d
of Rn and B ∈Rn(e). Let (X1, . . . , Xd) be a basis of A, (Y1, . . . , Ye) be a basis of B ∩Zn, and denote by
M ∈ Mn(R) the matrix whose columns are X1, . . . , Xd , Y1, . . . , Ye respectively. There exists a constant
c > 0 depending only on (X1, . . . , Xd) such that

ϕ(A, B)= c
|det M |

H(B)
.

Proof. The following claim comes from equation (7), page 446 of [Schmidt 1967].

Claim 2.5. One has

ϕ(A, B)=
D(X1, . . . , Xd , Y1, . . . , Ye)

D(X1, . . . , Xd)D(Y1, . . . , Ye)
.

Since (Y1, . . . , Ye) is a basis of B ∩ Zn, Claim 2.5 together with Theorem 2.3 gives us

ϕ(A, B)= cD(X1, . . . , Xd , Y1, . . . , Ye)H(B)−1,

where c = D(X1, . . . , Xd)
−1 > 0 is a constant depending only on (X1, . . . , Xd). Moreover, the

matrix M is a square matrix, so D(X1, . . . , Xd , Y1, . . . , Ye)
2
= det( tM M) = det(M)2. Thereby, since

D(X1, . . . , Xd , Y1, . . . , Ye)⩾ 0, one has ϕ(A, B)= c|det M |H(B)−1. □

Lemma 2.6. Let n ⩾ 2, A and B be two subspaces of Rn of dimensions d and e respectively. Then for all
j ∈ {1, . . . ,min(d, e)}, we have ψj (A, B)⩾ ϕ(A, B)1/j .

Proof. Let t = min(d, e) and j ∈ {1, . . . , t}. From the definition of the ψi , one has ψ1(A, B) ⩽ · · · ⩽
ψt(A, B)⩽ 1. Thereby, the product in (1) can be split as

ϕ(A, B)=

( j∏
i=1

ψi (A, B)︸ ︷︷ ︸
⩽ψj (A,B)

)
×

( t∏
i= j+1

ψi (A, B)︸ ︷︷ ︸
⩽1

)
⩽ ψj (A, B) j . □

We can now provide a proof of Proposition 2.2.

Proof of Proposition 2.2. Together with Lemma 2.6 applied for j =1, Lemma 2.1 shows thatµ4(Aξ |2)1⩽3.
Since Theorem 1.2 gives µ4(Aξ |2)1 ⩾ µ̊4(2|2)1 ⩾ 3, Proposition 2.2 follows. □

In order to prove Lemma 2.1, we will use the following definition and theorem (see [Beresnevich 2015,
Corollary 1]).
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Definition 2.7. Let Bad be the set of all y ∈ Rk such that there exists c > 0 such that the only integer
solution (a0, . . . , ak) to the inequality

|a0+a1 y1+·· ·+ak yk |< c∥(a1, . . . ,ak)∥
−k
∞

is the trivial one (0, . . . ,0).

Theorem 2.8 (Beresnevich, 2015). Let M be a manifold immersed into Rn by an analytic nondegenerate
map. Then Bad ∩M has the same Hausdorff dimension as M; in particular Bad ∩M ̸= ∅.

Finally, let us prove Lemma 2.1.

Proof of Lemma 2.1. Let B ∈R4(2) and (Y1, Y2) be a basis of B ∩Z4. Let us denote by (η1, . . . , η6) a set
of Plücker coordinates of B associated with the basis (Y1, Y2) as in Theorem 2.3, so that (η1, . . . , η6)∈ Z6

and gcd(η1, . . . , η6)= 1. Moreover, this vector satisfies the Plücker relation (see [Caldero and Germoni
2015, Theorem 2.9]) for a subspace of dimension 2 of R4:

η1η6 − η2η5 + η3η4 = 0. (3)

The manifold M={(1, ξ,
√

7 − ξ 2) : ξ ∈ ]0,
√

7[} is nondegenerate (the functions ξ 7→ 1, ξ 7→ ξ , and ξ 7→√
7 − ξ 2 are linearly independent over R), so Theorem 2.8 implies the existence of ξ ∈ ]0,

√
7[ such that

(1, ξ,
√

7 − ξ 2) ∈ Bad. In particular 1, ξ and
√

7 − ξ 2 are linearly independent over Q. Let us denote by
Mξ the matrix of M4(R)whose columns are X (1)

ξ , X (2)
ξ , Y1, Y2 respectively. Notice that Aξ∩B ={0} if, and

only if, det Mξ ̸= 0. The determinant of Mξ is computed by a Laplace expansion on its two first columns:

det Mξ = −η6 + η5ξ − η4

√
7 − ξ 2 − η3

√
7 − ξ 2 − η2ξ + 7η1. (4)

Assuming that det Mξ = 0 we have

−η6 + 7η1 + (η5 − η2)ξ + (−η3 − η4)
√

7 − ξ 2 = 0. (5)

Since dimQ SpanQ(1, ξ,
√

7 − ξ 2)= 3 and the ηi are integers, (5) gives

(η4, η5, η6)= (−η3, η2, 7η1). (6)
Thereby, (3) becomes

η2
2 + η2

3 = 7η2
1.

Reducing modulo 4, this equation implies that η1, η2 and η3 are even, which contradicts the assumption
gcd(η1, . . . , η6)= 1 using (6). Thereby, det Mξ ̸= 0, so Aξ ∩ B = {0} which proves that the subspace Aξ
is (2, 1)-irrational.

To establish inequality (2) of Lemma 2.1, recall that the basis (Y1, Y2) of B is also a Z-basis of B ∩ Z4.
Hence, Lemma 2.4 gives a constant c1 > 0 depending only on (X (1)

ξ , X (2)
ξ ) such that

ϕ(Aξ , B)= |det(Mξ )|
c1

H(B)
. (7)

Since the Plücker coordinates η= (η1, . . . , η6) of B are integers and satisfy gcd(η1, . . . , η6)= 1, one has

H(B)= ∥η∥. (8)

Now recall that we have chosen ξ in such a way that there exists a constant c2 > 0 such that for all
q = (a,b,c)∈ Z3

\{(0,0,0)}

|a
√

7 − ξ 2 + bξ + c| ⩾ c2∥q∥
−2. (9)
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Notice that for q = (−η3 − η4, η5 − η2,−η6 + 7η1), one has q ̸= (0, 0, 0), otherwise (6) would be true,
and it was already said that this was impossible. Moreover, ∥q∥ ⩽

√
67∥η∥, so inequality (9) combined

with (4) gives

|det(Mξ )| ⩾ c3∥η∥
−2.

This inequality together with (7) and (8) give a constant c4 > 0 such that

ϕ(Aξ , B)⩾
c4

H(B)3
. □

Remark 2.9. In the same way, one can construct infinitely many subspaces Aξ defined over Q satisfying
µ4(Aξ |2)1 = 3 with a theorem of Schmidt. The point is to replace in the proof of Lemma 2.1 the use of
Theorem 2.8 by Theorem 2 of [Schmidt 1970]; the only difference is that the exponent −2 in (9) becomes
−2−ε for any ε>0, and −3 becomes −3−ε in (2). Up to this modification, Lemma 2.1 and Proposition 2.2
are still true if ξ ∈ ]0,

√
7[ is a real algebraic number satisfying dimQ SpanQ(1, ξ,

√
7 − ξ 2) = 3. In

particular, for ξ =
√

2, one gets the explicit example

µ4(A√
2 |2)1 = 3.

3. Approximation of a subspace of dimension 3 by rational planes in R5

The method developed here is very similar to the one used in Section 2, so we will not linger on the
details in this section. Computations are not detailed, see [Joseph 2021] for extended computations. The
main result is Theorem 1.8: µ̊5(3|2)1 ⩽ 6.

As in Section 2, a subspace of R5 is explicitly constructed so that it is (2, 1)-irrational and at the same
time not so well approximated by rational planes of R5. We will start by stating some lemmas to prove
this statement; the proofs of the lemmas will follow later.

Let ζ3 be a real number, let us consider the four real numbers

ζ1 = −
112ζ 4

3 −196ζ 3
3 −(42

√
2ζ 3

3 −17
√

2ζ 2
3 +13

√
2ζ3)

√
4ζ3−5

√
ζ3−1+88ζ 2

3 −30ζ3+6

4
(
10ζ 4

3 −7ζ 3
3 −(4

√
2ζ 3

3 +3
√

2ζ 2
3 +

√
2)

√
4ζ3−5

√
ζ3−1−10ζ 2

3 +5ζ3−2
) ,

ζ2 = −
52ζ 4

3 −154ζ 3
3 −(18

√
2ζ 3

3 −35
√

2ζ 2
3 +13

√
2ζ3−6

√
2)

√
4ζ3−5

√
ζ3−1+148ζ 2

3 −60ζ3+18

4
(
10ζ 4

3 −7ζ 3
3 −(4

√
2ζ 3

3 +3
√

2ζ 2
3 +

√
2)

√
4ζ3−5

√
ζ3−1−10ζ 2

3 +5ζ3−2
) ,

ζ4 = −

√
2
√

4ζ3−5
√
ζ3−1ζ 2

3 −6ζ 3
3 +3ζ 2

3 +3ζ3

2(ζ 2
3 −1)

,

ζ5 = −

√
2
√

4ζ3−5
√
ζ3−1ζ3−3ζ 2

3 +3ζ3

2(ζ 2
3 −1)

,

assuming ζ3 ⩾
5
4 so that all square roots are well defined, and ζ3 large enough so that all denominators

are nonzero (actually, ζ3 ⩾
5
4 is sufficient for both conditions). Let

ξ1 = 1, ξ2 = ζ2 + ζ5, ξ3 = −ζ1, ξ4 = 1 + ζ1 + ζ5, ξ5 = ζ2,

ξ6 = 2ζ2 − ζ5, ξ7 = −ζ3, ξ8 = ζ3, ξ9 = ζ4, ξ10 = ζ5

and finally ξ = (ξ1, . . . , ξ10). The following lemma allows us to construct the subspace of R5 wanted.
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Lemma 3.1. There exists a subspace Aξ of dimension 3 of R5 which admits the vector ξ as Plücker
coordinates (with respect to lexicographic order).

Now that the subspace Aξ has been constructed, we can state that it is indeed (2, 1)-irrational and not
so well approximated by rational planes of R5.

Lemma 3.2. There exist real numbers ζ3 ⩾
5
4 and c> 0 such that Aξ ∈ I5(3, 2)1 and, for all B ∈R5(2),

ϕ(Aξ , B)⩾
c

H(B)6
. (10)

This lemma together with Lemma 2.6 immediately leads to the following proposition.

Proposition 3.3. There exists ζ3 ⩾
5
4 such that

µ5(Aξ |2)1 ⩽ 6.

Much as in Section 2, Theorem 1.8 is an immediate consequence of Proposition 3.3, which itself
follows from Lemma 2.6 and Lemma 3.2. We will start with the proof of Lemma 3.1.

Proof of Lemma 3.1. There exists a subspace which admits ξ as Plücker coordinates if, and only if,
the coordinates of ξ satisfy the Plücker relations (see [Caldero and Germoni 2015, Theorem 2.9]) for a
subspace of dimension 3 of R5: 

ξ2ξ5 = ξ3ξ4 + ξ1ξ6,

ξ2ξ8 = ξ3ξ7 + ξ1ξ9,

ξ4ξ8 = ξ5ξ7 + ξ1ξ10,

ξ4ξ9 = ξ6ξ7 + ξ2ξ10,

ξ5ξ9 = ξ6ξ8 + ξ3ξ10.

(11)

A basic formal computation shows that the vector ξ , as it has been defined, indeed satisfies system (11). □

Before proving the crucial Lemma 3.2, we need a technical result.

Lemma 3.4. The manifold M =
{
(1, ζ1, ζ2, ζ3, ζ4, ζ5) : ζ3 ⩾

5
4

}
is nondegenerate.

Proof. Let (a0, . . . , a5) ∈ R6 such that a0 + a1ζ1 + · · · + a5ζ5 = 0 for any ζ3 ⩾ 5
4 . One can compute

polynomials P1, P2, P3 ∈ R[X ] such that

0 = a0 + a1ζ1 + · · · + a5ζ5 =
P1(ζ3)+ P2(ζ3)

√
P3(ζ3)

10ζ 3
3 + 7ζ3 − 2 − (4ζ 2

3 − ζ3 + 1)
√

P3(ζ3)
.

Hence, one has P1(ζ3)+P2(ζ3)
√

P3(ζ3)= 0, so for all ζ3 ⩾
5
4 we have P(ζ3)= P2

1 (ζ3)−P2
2 (ζ3)P3(ζ3)= 0.

The four equations given by the monomials of degrees 32, 30, 28 and 26 lead to a system of equa-
tions between the ai , which implies a0 = a3 = a4 = a5. Considering the monomials of degree 22
lead to 14a2

1 + 4a1a2 − a2
2 = 0, so a2 = (2 ± 3

√
2)a1, and the monomials of degree 21 lead to

7a2
1 − 118a1a2 + 19a2

2 = 0 which cannot be. Therefore, ai = 0 for all i ∈ {0, . . . , 5} so the manifold
considered is nondegenerate. □

With Lemma 3.4, we are now able to prove Lemma 3.2. Notice that the proof is quite similar to the
proof of Lemma 2.1.
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Proof of Lemma 3.2. Let B ∈R5(2) and (Y1, Y2) be a basis of B ∩Z5, let us denote by (η1, . . . , η10) a set
of Plücker coordinates for B associated with the basis (Y1, Y2) ordered by lexicographic order. According
to Theorem 2.3, one has (η1, . . . , η10) ∈ Z10 and gcd(η1, . . . , η10) = 1. Moreover, this vector satisfies
the Plücker relations for a subspace of dimension 2 of R5:

η2η5 = η3η4 + η1η6,

η2η8 = η3η7 + η1η9,

η4η8 = η5η7 + η1η10,

η4η9 = η6η7 + η2η10,

η5η9 = η6η8 + η3η10.

(12)

According to Lemma 3.4, the manifold M =
{
(1, ζ1, ζ2, ζ3, ζ4, ζ5) : ζ3 ⩾ 5

4

}
is nondegenerate, so

Theorem 2.8 implies the existence of ζ3 ⩾ 5
4 such that (1, ζ1, ζ2, ζ3, ζ4, ζ5) ∈ Bad. In particular,

1, ζ1, ζ2, ζ3, ζ4, ζ5 are linearly independent over Q. Let (X (1)
ξ , X (2)

ξ , X (3)
ξ ) be a basis of Aξ associated

with ξ . Let us denote by Mξ the matrix of M5(R) whose columns are X (1)
ξ , X (2)

ξ , X (3)
ξ , Y1, Y2 respectively.

Notice that Aξ ∩ B = {0} if, and only if, det Mξ ̸= 0. The determinant of Mξ is computed by a Laplace
expansion on its first three columns:

det Mξ = ξ1η10 − ξ2η9 + ξ3η8 + ξ4η7 − ξ5η6 + ξ6η5 − ξ7η4 + ξ8η3 − ξ9η2 + ξ10η1.

Let us assume that det Mξ = 0; this implies

0 = det(Mξ )

= η10 − (ζ2 + ζ5)η9 − ζ1η8 + (1 + ζ1 + ζ5)η7 − ζ2η6 + (2ζ2 − ζ5)η5 + ζ3η4 + ζ3η3 − ζ4η2 + ζ5η1

= η10 + η7 + (−η8 + η7)ζ1 + (−η9 − η6 + 2η5)ζ2 + (η4 + η3)ζ3 − η2ζ4 + (−η9 + η7 − η5 + η1)ζ5.

Since 1, ζ1, ζ2, ζ3, ζ4, ζ5 are linearly independent over Q and the ηi are integers, the equation above yields
the relations

(η1, η2, η4, η6, η8, η10)= (η9 − η7 + η5, 0,−η3,−η9 + 2η5, η7,−η7).

Thus, system (12) becomes 

η2
3 − 2η2

5 + 2η5η7 − η5η9 − η7η9 + η2
9 = 0,

−η3η7 − η5η9 + η7η9 − η2
9 = 0,

−η3η7 − η2
7 + η7η9 = 0,

−2η5η7 − η3η9 + η7η9 = 0,
η3η7 − 2η5η7 + η5η9 + η7η9 = 0,

(13)

whose set of rational solutions is the singleton {(0, . . . , 0)} (once again, the computations can be found in
[Joseph 2021]). Thereby, det Mξ ̸= 0, so Aξ ∩ B = {0} which implies that Aξ ∈ I5(3, 2)1.

The proof of second part of the lemma is almost identical to the proof of (2) in Lemma 2.1, but with 6
reals numbers instead of 3. □

Remark 3.5. Similarly as in Section 2, one can construct infinitely many subspaces Aξ defined over Q

satisfying µ5(Aξ |2)1 ⩽ 6 with Theorem 2 of [Schmidt 1970]. The only difference is that the exponent
−6 in (10) becomes −6 − ε for any ε > 0. Up to this modification, Lemma 3.2 and Proposition 3.3 are
still true if ζ3 ⩾

5
4 is a real algebraic number satisfying [Q(ζ3) : Q] ⩾ 33.
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4. Some comments on the method

We believe that the method developed in Sections 2 and 3 can be used to improve several other upper
bounds for µ̊n(d |e)1 when d + e = n. As one can see in Section 3, the computations seem to be
significantly more complicated with n growing. The main difficulty in R5 was to construct a subspace Aξ
complicated enough so that system (13) would not have any nontrivial rational solution — which implies
Aξ ∈ I5(3, 2)1 — but also sufficiently simple so that it is indeed possible to show that this system does
not have any nontrivial rational solution.

This method creates two contradictory wishes on the subspace A desired:

• to have a lot of Plücker coordinates linearly independent over Q so that A is (e, 1)-irrational;

• to have few Plücker coordinates linearly independent over Q to obtain the best possible exponent
with Theorem 2.8.

5. Application of Schmidt’s going-up theorem

Here, we will prove Corollary 5.2 which implies Proposition 1.4 from which is immediately deduced
Theorem 1.9: µ̊2d(d |ℓ)1 ⩽ 2d2/(2d − ℓ). Indeed, Proposition 1.4 together with Theorem 1.5 gives, for
ℓ ∈ {1, . . . , d}, µ̊2d(d |ℓ)1 ⩽ (2d − d)/(2d − ℓ)µ̊2d(d |d)1 ⩽ 2d2/(2d − ℓ).

Theorem 1.9 allows us to improve on numerous known upper bounds for µ̊2d(d |ℓ)1, since for instance
taking ℓ= d − 1 implies

2d2

2d − ℓ
∼

d→+∞

2d

and the known upper bound for µ̊2d(d |d − 1)1, given by Theorem 1.2, is asymptotically equivalent to
⌊d2/2⌋. Notice that when ℓ is fixed and d tends to +∞, Theorem 1.2 gives an upper bound asymptotically
equivalent to 2ℓ, which is better than our new bound. The best improvements occur when ℓ is close to d ,
for instance Theorem 1.9 implies µ̊6(3|2)1 ⩽ 9

2 improving on µ̊6(3|2)1 ⩽ 5, µ̊12(6|4)1 ⩽ 9 improving
on µ̊12(6|4)1 ⩽ 11, and µ̊22(11|6)1 ⩽ 15.125 improving on µ̊12(6|4)1 ⩽ 17.

Let us now state Schmidt’s going-up theorem [1967, Theorem 9].

Theorem 5.1 (going-up [Schmidt 1967]). Let d, e ∈ N∗ be such that d + e < n; let t = min(d, e). Let
A be a subspace of Rn of dimension d and B ∈ Rn(e). Let H ⩾ 1 be such that H(B) ⩽ H , and such
that there exist xi , yi ∈ R such that for all i ∈ {1, . . . , t}, H(B)xiψi (A, B)⩽ c1 H−yi with c1 > 0. Then
there exists a constant c2 > 0 depending only on n and e, and a constant c3 > 0 depending only of n, e, xi

and yi , such that if H ′
= c2 H (n−e−1)/(n−e), then there exists C ∈ Rn(e + 1) such that C ⊃ B, H(C)⩽ H ′

and, for all i ∈ {1, . . . , t},

H(C)xi (n−e)/(n−e−1)ψi (A,C)⩽ c1c3 H ′−yi (n−e)/(n−e−1).

Let us formulate a corollary to the going-up theorem.

Corollary 5.2. Let d, e, j, ℓ ∈ N∗ be such that d + e ⩽ n, 1 ⩽ j ⩽ ℓ ⩽ e and j ⩽ d. Then for all
A ∈ In(d, e)j , one has A ∈ In(d, ℓ)j and

µn(A |e)j ⩾
n − ℓ

n − e
·µn(A |ℓ) j .

Since In(d,e)j ⊂In(d,ℓ)j , Corollary 5.2 implies immediately Proposition 1.4 stated in the Introduction.
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Remark 5.3. Notice that Corollary 5.2 generalises Theorem 2 of [Laurent 2009]. Corollary 5.2 does
not necessarily need to be applied to a line, and the irrationality hypothesis is weaker than the one in
[Laurent 2009].

Proof of Corollary 5.2. Notice that In(d, e)j ⊂ In(d, ℓ)j since ℓ⩽ e. Let α = µn(A |ℓ) j and ε > 0; there
exist infinitely many subspaces B ∈ Rn(ℓ) such that

ψj (A, B)⩽
1

H(B)α−ε
. (14)

For each such subspace B, the going-up theorem applied e − ℓ times gives a subspace C ∈ Rn(e) such
that C ⊃ B and

ψj (A,C)⩽
c

H(C)(α−ε)(n−ℓ)/(n−e) , (15)

with c > 0 depending only on A and ε. The subspace A is (e, j)-irrational, so for all C ∈ Rn(e),
ψj (A,C) ̸= 0. Thus, if there were only a finite number of rational subspaces C such that inequality (15)
holds, there would be a constant c′ > 0 such that, for all C ∈ Rn(e),

ψj (A,C) > c′. (16)

Since there are infinitely many subspaces B ∈ Rn(ℓ) such that inequality (14) holds, there exist such
subspaces of arbitrary large height, thus such that ψj (A, B)⩽ c′. The subspace C obtained from B with
the going-up theorem satisfies B ⊂ C , so ψj (A,C) ⩽ ψj (A, B) ⩽ c′, which contradicts (16). Hence,
there are infinitely many subspaces C ∈ Rn(e) such that (15) holds, and the corollary follows. □

6. A lower bound for µ̊n(d |e) j in the general case

The goal here is to prove a new lower bound for µ̊n(d |e)j (Theorem 1.10). The strategy is to break down
the subspace we want to approach into subspaces of lower dimension (here, we will use lines). It is then
possible to approach simultaneously each line (it will be done with Dirichlet’s approximation theorem),
and to deduce an approximation of the original subspace.

The bound given by Theorem 1.10 improves asymptotically (for fixed j , d and e) the known lower
bound for µ̊n(d |e)j (Theorem 1.2).

Let d ⩽ n/2. Combining Theorem 1.10 with Theorem 1.6, one obtains

2dn − d2
+ d + 2

2d2n − d3 + d2 ⩽ µ̊n(d |d)d ⩽
n

d(n − d)
,

and hence Corollary 1.11,

lim
n→+∞

µ̊n(d |d)d =
1
d
.

The proof of Theorem 1.10 will require a lemma on the behaviour of the proximity function ψ with
direct sums.

Lemma 6.1. Let n ⩾ 4 and F1, . . . , Fℓ, B1, . . . , Bℓ be 2ℓ subspaces of Rn such that, for all i ∈ {1, . . . , ℓ},
dim Fi = dim Bi = di . Assume that the Fi span a subspace of dimension k = d1 + · · · + dℓ and so do
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the Bi . Let F = F1 ⊕ · · · ⊕ Fℓ and B = B1 ⊕ · · · ⊕ Bℓ, then one has

ψk(F, B)⩽ cF,n

ℓ∑
i=1

ψdi (Fi , Bi ),

where cF,n > 0 is a constant depending only on F1, . . . , Fℓ and n.

Proof. The idea is to break down each Fi and each Bi into a direct sum of well chosen lines. For this, we
will use the following claim.

Claim 6.2. Let D and E be two subspaces of Rn of dimension k. There exist k lines D1, . . . , Dk of D
and k lines E1, . . . , Ek of E such that D = D1 ⊕ · · · ⊕ Dk , E = E1 ⊕ · · · ⊕ Ek , and

ψk(D, E)⩽
k∑

i=1

ψ1(Di , Ei )⩽ kψk(D, E). (17)

Proof of Claim 6.2. There exist an orthonormal basis (X1, . . . , Xk) of D and an orthonormal basis
(Y1, . . . , Yk) of E such that for all i ∈ {1, . . . , k}, ψi (D, E)=ψ(X i , Yi ). Moreover, for all i ∈ {1, . . . , k},
one has ψi (D, E)⩽ ψk(D, E). Let us set, for i ∈ {1, . . . , k}, Di = Span(X i ) and Ei = Span(Yi ) to get
the second part of inequality (17):

k∑
i=1

ψ1(Di , Ei )=

k∑
i=1

ψ(X i , Yi )=

k∑
i=1

ψi (D, E)⩽ kψk(D, E).

The first part of inequality (17) is trivial since ψ1(Di , Ei )⩾ 0 for any i , and ψk(D, E)=ψ1(Dk, Ek). □

We can come back to the proof of Lemma 6.1. Let i ∈ {1, . . . , ℓ}; according to Claim 6.2, there exist
di lines Di,1, . . . , Di,di of Fi and di lines Ei,1, . . . , Ei,di of Bi such that

di∑
j=1

ψ1(Ei, j , Di, j )⩽ diψdi (Fi , Bi )⩽ nψdi (Fi , Bi ). (18)

Let ai,1, . . . , ai,di be unitary vectors of Di,1, . . . , Di,di respectively and bi,1, . . . , bi,di be unitary vectors
of Ei,1, . . . , Ei,di respectively, such that for all j ∈ {1, . . . , di }, ai, j · bi, j ⩾ 0. Let (X1, . . . , Xk) and
(Y1, . . . , Yk) be orthonormal bases of F and B respectively, such that ψj (F, B) = ψ(X j , Yj ) for any
j ∈ {1, . . . , k}. Let Z = λ1Y1 + · · · + λkYk be a unitary vector of B. One has

|Xk · Z | =

∣∣∣∣ k∑
i=1

λi Xk · Yi

∣∣∣∣ ⩽ k∑
i=1

|λiδi,k Xk · Yi | ⩽ Xk · Yk

which implies
ψk(F, B)= ψ(Xk, Yk)⩽ min

Z∈B\{0}

ψ(Xk, Z)= ψ1(Span(Xk), B).

Moreover, Span(Yk)⊂ B, so ψ1(Span(Xk), B)⩽ ψ(Xk, Yk). Hence

ψk(F, B)= ψ1(Span(Xk), B). (19)

Let us decompose Xk in the basis (a1,1, . . . , aℓ,dℓ) as Xk =
∑ℓ

i=1
∑di

j=1 xi, j ai, j , and let

Y =

ℓ∑
i=1

di∑
j=1

xi, j bi, j ∈ B.
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Since Xk is unitary, one has

ψ(Xk, Y )⩽ ∥Xk − Y∥ =

∥∥∥∥ ℓ∑
i=1

di∑
j=1

xi, j (ai, j − bi, j )

∥∥∥∥ ⩽
ℓ∑

i=1

di∑
j=1

|xi, j |∥ai, j − bi, j∥,

where ∥·∥ stands for the Euclidean norm. For i ∈ {1, . . . , ℓ} and j ∈ {1, . . . , di }, let us consider the
functions

pi, j : F → R,

ℓ∑
i=1

di∑
j=1

xi, j ai, j 7→ xi, j .

These functions are continuous on the compact K = {x ∈ F : ∥x∥ = 1}, so they are bounded on it. Thus,
there exists c(1)F,n a constant depending only on a1,1, . . . , aℓ,dℓ such that for all x =

∑ℓ
i=1

∑di
j=1 xi, j ai, j ∈ K ,

one has |xi, j | ⩽ c(1)F,n .
We now require an elementary claim.

Claim 6.3. Let X and Y be unitary vectors such that X · Y ⩾ 0. One has

ψ(X, Y )⩾
√

2
2 ∥X − Y∥.

Proof. Let p⊥

Span(Y ) be the orthogonal projection onto Span(Y ),

α = ∥X − p⊥

Span(Y )(X)∥ and β = ∥Y − p⊥

Span(Y )(X)∥.

One has ∥X − Y∥
2
= α2

+β2, and since X is unitary,

ψ(X, Y )= ψ(X, p⊥

Span(Y )(X))= ∥X − p⊥

Span(Y )(X)∥ = α.

Moreover, X · Y ⩾ 0, so 1 = ∥X∥
2
= (1 −β)2 +α2; hence there exists θ ∈

[
0, π2

]
such that 1 −β = cos θ

and α = sin θ . Since 1 − cos θ ⩽ sin θ , we have β ⩽ α, and finally ∥X − Y∥
2 ⩽ 2α2

= 2ψ(X, Y )2. □

We can come back to the proof of Lemma 6.1. Since for all i, j one has ai, j ·bi, j ⩾0, applying Claim 6.3
yields

ψ(Xk, Y )⩽ c(1)F,n

ℓ∑
i=1

di∑
j=1

∥ai, j − bi, j∥ ⩽ c(2)F,n

ℓ∑
i=1

di∑
j=1

ψ1(Di, j , Ei, j )

because the ai, j and the bi, j are unitary vectors, with c(2)F,n =
√

2c(1)F,n . Finally, inequality (18) implies

ψ(Xk, Y )⩽ c(2)F,nn
ℓ∑

i=1

ψdi (Fi , Bi ) (20)

and with (19) yields
ψk(F, B)⩽ ψ1(Span(Xk), B)⩽ ψ(Xk, Y )

because Y ∈ B. Using inequality (20), it follows

ψk(F, B)⩽ cF,n

ℓ∑
i=1

ψdi (Fi , Bi ). □

Now that Lemma 6.1 is proved, we can tackle the proof of Theorem 1.10.
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Proof of Theorem 1.10. Let F ∈In(d, e)j . Let us show that F possesses an orthonormal family ( f1, . . . , f j )

such that for all ℓ ∈ {1, . . . , j}, at least d − ℓ coordinates of fℓ vanish. We proceed by induction on
ℓ0 ∈ {0, . . . , j}, constructing an orthonormal family ( f1, . . . , fℓ0) such that for any ℓ ∈ {1, . . . , ℓ0}, at
least d − ℓ coordinates of fℓ vanish. For ℓ0 = 0 the empty family has this property. If such a family
( f1, . . . , fℓ0) is constructed for some ℓ0 ∈ {0, . . . , j − 1}, we denote by G the orthogonal complement of
Span( f1, . . . , fℓ0) in F ; if ℓ0 = 0 this means G = F . One has G ∩(Rn−d+ℓ0+1

×{0}
d−ℓ0−1) ̸= {0} because

codim(Rn−d+ℓ0+1
×{0}

d−ℓ0−1)= dim G −1, let fℓ0+1 ∈ G ∩ (Rn−d+ℓ0+1
×{0}

d−ℓ0−1) be a unitary vector.
At least d − (ℓ0 + 1) coordinates of this vector vanish, and it is orthogonal to f1, . . . , fℓ0 . This concludes
the proof by induction.

In all what follows, let ( f1, . . . , f j ) be an orthonormal family of F such that for all ℓ ∈ {1, . . . , j}, at
least d −ℓ coordinates of fℓ vanish. Let us denote by x the vector formed with all the nonzero coordinates
of the fℓ and denote by N ∈ {1, . . . , jn − jd + j2/2 + j/2} its number of coordinates.

One has x ∈ RN
\ QN , otherwise ( f1, . . . , f j ) would span a rational subspace of dimension j of F ,

which cannot be since F ∈ In(d, e)j . Using Dirichlet’s approximation theorem, there exist infinitely
many pairs (p, q) ∈ ZN

× N∗ such that gcd(p1, . . . , pN , q)= 1 and∥∥∥∥x −
p
q

∥∥∥∥
∞

⩽
1

q1+1/N . (21)

Let us fix such a pair (p, q). For i ∈ {1, . . . , j}, let us denote by ri the subfamily of p corresponding
to its coordinates approaching those of fi , completed with zeros so that ri ∈ Zn is close to q fi . For all
i ∈ {1, . . . , j}, one has ∥ fi − ri/q∥∞ ⩽ q−1−1/N.

Let B = Span(r1, . . . , rj ), and let us denote by π⊥

i ( fi ) the orthogonal projection of fi onto Span(ri/q).
One has

ψ

(
fi ,

ri

q

)
= sin

̂(
fi ,

ri

q

)
=

∥ fi −π⊥

i ( fi )∥

∥ fi∥
⩽

∥∥∥∥ fi −
ri

q

∥∥∥∥ ⩽
c1

q1+1/N (22)

because ∥ fi∥= 1, with c1> 0 depending only on n. Inequality (21) gives ∥p∥∞−∥qx∥∞ ⩽ ∥qx − p∥∞ ⩽
q−1/N ⩽ 1, so for all i ∈ {1, . . . , j}: ∥ri∥∞ ⩽ ∥p∥∞ ⩽ 1+∥qx∥∞ ⩽ c2q , with c2> 0 depending only on F .

For E a subspace of Rn and P a family of linearly independent vectors of E , let us denote by volE(P)
the volume of the parallelotope spanned by the vectors of P and considered in the Euclidean space E .
Since (r1, . . . , rj ) is a sublattice of B ∩ Zn, one has using Theorem 2.3

H(B)⩽ volB(r1, . . . , rj )⩽
j∏

i=1

∥ri∥ ⩽ c3q j ,

with c3 > 0 depending only on F . Thus, there exists a constant c4 > 0 such that

1
q
⩽

c4

H(B)1/j . (23)

Let F̃j =Span( f1, . . . , f j )which is a subspace of dimension j of F , and let Bi =Span(ri ) for i ∈{1, . . . , j}.
According to Lemma 6.1 and inequality (22), one has

ψj (F̃j , B)= ψj

( j⊕
i=1

Span( fi ),

j⊕
i=1

Bi

)
⩽ c5

j∑
i=1

ψ1(Span( fi ), Bi )⩽
c6

q(N+1)/N , (24)
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with c5, c6 > 0 depending only on n and F . Moreover, F ⊃ F̃j , so ψj (F, B) ⩽ ψj (F̃j , B). Thus,
inequalities (23) and (24) show that there exists a constant c7 > 0 depending only on n and F such that

ψj (F, B)⩽
c7

H(B)(N+1)/( j N ) ⩽
c7

H(B)( jn− jd+ j2/2+ j/2+1)/( j ( jn− jd+ j2/2+ j/2))
; (25)

hence

µ̊n(d | j) j ⩾
jn − jd + j2/2 + j/2 + 1

j2(n − d + j/2 + 1/2)

and the result follows from Proposition 1.4. □
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